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Challenge: controlling light deep within tissue  

SLM

Wavefront-shaping: "undo" scattering 

Light randomly scatters within tissue 
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How do we form a focus deep within tissue? 

Technique #1: Optical Phase Conjugation 



Guidestar examples 
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R. Horstmeyer et al., "Guidestar-assisted 
wavefront-shaping methods for focusing light 
into biological tissue", Nature Photon. (2015) 



This talk: efficiently scanning focused light deep within tissue  

Goal: want to scan focus around  
 

Equivalent: maximize FOV of imaging 
with adaptive optics 

Scan FOV



Talk Outline 

1. The optical memory effect 

2. The "shift/shift" memory effect 

3. The generalized memory effect 

4. Experimental demo of maximized scanning  

5. Scanning further with time-gated light 



The optical memory effect 

•  Well-known scattering correlation 

•  Speckle at a distance shifts around but does not change shape 

Plane wave Scattered field U Speckle V



The optical memory effect 

Tilt the wave Scattered field tilts Speckle shifts

Δk	
U(k-Δk)

Application: Imaging "through" thin scattering layers 
•  J. Bertolotti et al., "Noninvasive imaging through opaque scattering layers," Nature (2012) 

•  O. Katz et al., "Noninvasive single shot imaging through opaque scattering layers and around corners," 
Nature Photon. (2014)  

•  X. Yang et al., "Imaging blood cells through scattering tissue using speckle scanning," Opt. Express (2014) 

V(x-Δx)

•  Well-known scattering correlation 

•  Speckle at a distance shifts around but does not change shape 



The optical memory effect 

1 S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834  (1988). 

•  Original approach1 interested in intensity-intensity correlations: 

"Memory effect" 

Δka	

I(k-Δka)



The optical memory effect 

2 R. Berkovits, M. Kaveh and S. Feng, Phys. Rev. B 40, 737 (1989). 

1 S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834  (1988). 

•  Original approach1 interested in intensity-intensity correlations: 

"Memory effect" 

•  We will work with field-field correlations2, the square root of CI
(1): 

Our primary interest



The optical memory effect 

TiltTilt
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T(ka, kb)
What does the memory effect look like within the transmission matrix?  



The optical memory effect 
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Scattering response 
to a point source: 
 
"Intensity 
propagator" 

dx 

Banded 
structure in Tx dx 

Visualization of the optical memory effect possible in k and x:  



The optical memory effect: a simple derivation 
T(xa, xb)

xb

xa xb

Assume we know the average magnitude of transmission matrix:  

Assume average intensity response to point source is shift-invariant: 

<I(xb)>

xa



The optical memory effect: a simple derivation 
T(xa, xb)
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Recipe to measure the optical memory effect: 

<I(xb)>

1.  Put point source on input surface 

2.  Measure average intensity at output surface, <I(xb)> 

3. Take Fourier transform to get C(Δk) 

<I(xb)> F1D C(Δk)Intensity 
propagator 

Optical memory 
effect 

xa



The shift/shift memory effect 
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What happens if we switch x's and k's? 
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The shift/shift memory effect 



The shift/shift memory effect: the Fourier dual 
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F2D
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ShiftShift

xa xb ka kb

Wavevector response 
to a plane wave: 
 
"k-space intensity 
propagator" 
<Î(ka,kb)> 

T(xa, xb) T(ka, kb)

 Î(k)



•  Identical derivation, x's and k's swapped 
 
•  Recipe to measure the shift/shift memory effect: 

1.  Shine plane wave on input surface 

2.  Measure average wavevector spread at output 

3.  Take its Fourier transform to get spatial correlation C(Δx) 

The shift/shift memory effect: the Fourier dual 
T(ka, kb)

ka

kb

ka kb

<Î(kb)>

•  Focus and scan within anisotropic material (e.g., tissue g ~ 0.92-0.98) 



Experimental demo of shift/shift memory effect 

B. Judkewitz, R. Horstmeyer et al., "Translation correlations in anisotropically scattering media," 
Nature Physics (2015) 

Light from SLM 
(optical phase 
conjugation)  



Experimental demo of shift/shift memory effect 

B. Judkewitz, R. Horstmeyer et al., "Translation correlations in anisotropically scattering media," 
Nature Physics (2015) 

Light from SLM 
(optical phase 
conjugation)  

Green curve: focus intensity 
Black curve: FT plane wave response 



How are these two effects connected? 

The tilt/tilt and shift/shift memory effects 

Tilt/tilt correlation 

Spatial impulse response k-space impulse response 

Shift/shift correlation 

<Î(kb)> <I(xb)> 

Scanning in k Scanning in x 

δ(ka) δ(xa) 
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New input: "single ray"* 

The generalized memory effect: combining tilts and shifts 

<P(xb,kb)>	

G. Osnabrugge, R. Horstmeyer et al, "The generalized optical memory effect," Optica (2017) 

*Actually defined via the Wigner distribution, paper has math details:	
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New input: "single ray"* Space-angle response <P(xb,kb)> 
 

The generalized memory effect: combining tilts and shifts 

<P(xb,kb)>	

G. Osnabrugge, R. Horstmeyer et al, "The generalized optical memory effect," Optica (2017) 

*Actually defined via the Wigner distribution, paper has math details:	
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The generalized memory effect: combining tilts and shifts 

<P(xb,kb)>	

2D Fourier transform of space-angle response gives tilt/shift correlation: 

G. Osnabrugge, R. Horstmeyer et al, "The generalized optical memory effect," Optica (2017) 
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New input: "single ray" Space-angle response <P(xb,kb)> 
 

The generalized memory effect: combining tilts and shifts 

<P(xb,kb)>	

2D Fourier transform of space-angle response gives tilt/shift correlation: 

4D Fourier transform used when scattering is not tilt/shift invariant: 

G. Osnabrugge, R. Horstmeyer et al, "The generalized optical memory effect," Optica (2017) 



The generalized memory effect: is it important? 

kb 

xb 

Space-angle response <P(xb,kb)> 
 

F2D

Tilt/shift correlations C(Δk, Δx) 
 

Δx 

Δk 

•  Tilting and shifting correlations generally not independent 

 



The generalized memory effect: is it important? 

kb 

xb 

Space-angle response <P(xb,kb)> 
 

F2D

Tilt/shift correlations C(Δk, Δx) 
 

•  Tilting and shifting correlations generally not independent 

•  Optimal tilt and shift combo can achieve larger scan range 

 

Δx 

Δk 
Only shifting

Tilting and shifting



Experimental setup 

•  Two experiments: 
 1. Pencil beam response, <P(xb,kb)> 
 2. Shift/tilt correlation function (shift both diffuser & sample) 

 
•  Tissue phantom samples (5 µm spheres in agar, g=0.97, 0.3 mm – 1 mm thick) 



Average space-angle scattering response to pencil beam 
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Directly measured shift/tilt correlations 
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Direct measurement FT2D of <P(xb,kb)>  Simple simulation 
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Directly measured shift/tilt correlations 
0.

3 
m

m
 th

ic
k 

0.
5 

m
m

 th
ic

k 

Direct measurement FT2D of <P(xb,kb)>  Simple simulation 

Shift-shift

Tilt/tilt[1]

[1] S. Schott et al., "Characterization of the angular memory effect of  
scattered light in biological tissue," Opt. Express (2015) 



Directly measured shift/tilt correlations 
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Direct measurement FT2D of <P(xb,kb)>  Simple simulation 

Shift-shift

Tilt/tilt[1]

Optimal shift/tilt

[1] S. Schott et al., "Characterization of the angular memory effect of  
scattered light in biological tissue," Opt. Express (2015) 



Scanning distances and the optimal rotation plane 

Δxa Δka

L/3

LΔka/k0 – ΔxaΔxa LΔka/k0

L

Δxa

Δka

Optimally tilt and shift =  
Tilt around plane L/3 deep  



Why is L/3 optimal? An intuitive picture 

Stack of semi-random phase plates 



Why is L/3 optimal? An intuitive picture 
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Why is L/3 optimal? An intuitive picture 

Δka

Correct for 
lower plate

Stack of semi-random phase plates 
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correction 
pattern



Why is L/3 optimal? An intuitive picture 

Δka Stack of semi-random phase plates 

Distort 
pattern

Distort 
focus
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Why is L/3 optimal? An intuitive picture 

Δka Stack of semi-random phase plates 

Correcting 
here also 
corrects for 
planes after 
focus and at 
edges

L
2



Why is L/3 optimal? An intuitive picture 

Δka Stack of semi-random phase plates 

Preferentially 
weight slightly 
higher 
correction 
plane

L
2



Towards a larger memory effect with time gating 

t t0

L

•  Goal: select early arriving "snake" photons for scanning 

<Îb(kb)>

<Î(kb)>

Full scattering range 

More ballistic scatter 



Towards a larger memory effect with time gating 

t t0

L

•  Hypothesis: early arriving snake photons offer larger scan range 

<Îb(kb)>

<Î(kb)>

F1D
Cb(Δk)

F1D

C(Δk)



Experimental setup 

•  Eventually obtained gating measurements in the spectral domain: 

M. Kadobianskyi  et al., "Scattering correlations of time-gated light," ArXiv 1707.06896 (2017) 



Ultrafast speckle evolution over space 

Un-normalized Normalized 

y

x

•  Time step per frame: 8.5 femtoseconds 
•   360 µm thick tissue phantom 

5 µm 5 µm

M. Kadobianskyi  et al., "Scattering correlations of time-gated light," ArXiv 1707.06896 (2017) 

π	



Ultrafast speckle evolution over wavevector 

k-space, un-normalized k-space, normalized 

ky

kx

•  Time step per frame: 8.5 femtoseconds 
•   360 µm thick tissue phantom 

5 µm 5 µm

M. Kadobianskyi  et al., "Scattering correlations of time-gated light," ArXiv 1707.06896 (2017) 



M. Kadobianskyi  et al., "Scattering correlations of time-gated light," ArXiv 1707.06896 (2017) 

Ultrafast speckle evolution over space and wavevector 



Time gating extends the shift-shift memory effect 3-4X 

M. Kadobianskyi  et al., "Scattering correlations of time-gated light," ArXiv 1707.06896 (2017) 



To do: Put all of this together  

Shift/tilt memory effect Time gating 
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<P(xb,kb)>	
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1. Combine above: ? 
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2. Implement 
with F-Sharp1 

1I. N.  Papadopoulos et al., "Scattering compensation by focus scanning holographic aberration 
probing (F-SHARP)," Nature Photon. 2016 

? 



To do: Put all of this together  

Shift/tilt memory effect Time gating 

δ(xa,ka) 

<P(xb,kb)>	

t t

δ(t)	 <Q(t)>	

1. Combine above: 

1I. N.  Papadopoulos et al., "Scattering compensation by focus scanning holographic aberration 
probing (F-SHARP)," Nature Photon. 2016 

? 

2. Implement 
with F-Sharp1 

z	



Thank you! 

Joint work with: 

University of Twente: 
Gerwin Osnabrugge 
Ivo M. Vellekoop 

Charité Medical School: 
Yiannis Papadopoulos 
Nick Kadobianskyi  
Benjamin Judkewitz 

2018: starting as an assistant professor in Duke 
University's Biomedical Engineering Department, 

contact me if you'd like to chat! 

L/3



Fokker-Plank model for correlation in anisotropic scatterer:  

Find optimal Δkb: take derivative w.r.t. Δkb and set to 0:  

Use Δka = Δkb and Δrb = Δra +Δkak0/L: 

x 

-Δrb/2 

Tan(θ) ~ θ = (1/k0) * 3k0Δrb/2L = Δrb/2x 
 
x = Δrb/2 * 2L/3Δrb = L/3 
 

θ 

Quick derivation of L/3 depth:



Time gating shift/shift correlations with physical shifting 



Principle of F-Sharp  


